![]() |
Metocean: Historical collections
|
Brought to you by NOAA NMFS SWFSC ERD |
Dataset Title: | "Deepwater CTD - 03260512.ctd.nc - 25.5N, -84.37W - 1979-03-30"
![]() ![]() |
Institution: | Texas A&M University, Department of Oceanography (Dataset ID: deepwater_03260512_ctd) |
Information: | Summary ![]() ![]() ![]() |
To view the map, check View : Map of All Related Data above.
WARNING: This may involve lots of data.
For some datasets, this may be slow.
Consider using this only when you need it and
have selected a small subset of the data.
To view the counts of distinct combinations of the variables listed above,
check View : Distinct Data Counts above and select a value for one of the variables above.
Distinct Data
(Metadata)
(Refine the data subset and/or download the data)
depth | temperature | salinity | oxygen | nitrite | nitrate | phosphate | silicate | salinity2 | qualityFlag |
---|---|---|---|---|---|---|---|---|---|
m | degree_C | PSU | milliliters per liter | micromols | micromols | micromols | micromols | PSU | |
0.0 | 23.393999099731445 | 36.32699966430664 | 4.579999923706055 | -99.98999786376953 | -99.98999786376953 | -99.98999786376953 | 0.20000000298023224 | -99.0 | 0.0 |
2.0 | 23.393999099731445 | 36.32699966430664 | 4.670000076293945 | -99.98999786376953 | 0.10000000149011612 | 0.009999999776482582 | 0.699999988079071 | -99.0 | 0.0 |
4.0 | 23.399999618530273 | 36.32699966430664 | 4.980000019073486 | -99.98999786376953 | -99.98999786376953 | 0.019999999552965164 | 0.8999999761581421 | -99.0 | 0.0 |
6.0 | 23.402999877929688 | 36.32500076293945 | 4.840000152587891 | 0.3199999928474426 | 0.30000001192092896 | 0.05000000074505806 | 1.2000000476837158 | -99.0 | 0.0 |
8.0 | 23.402999877929688 | 36.32400131225586 | 3.640000104904175 | 0.5199999809265137 | 3.799999952316284 | 0.20000000298023224 | 1.5 | -99.0 | 0.0 |
10.0 | 23.405000686645508 | 36.32500076293945 | 3.3499999046325684 | 0.3199999928474426 | 6.300000190734863 | 0.3199999928474426 | 1.7999999523162842 | -99.0 | 0.0 |
12.0 | 23.4060001373291 | 36.32500076293945 | 3.1500000953674316 | 0.2199999988079071 | 9.600000381469727 | 0.5 | 2.5 | -99.0 | 0.0 |
14.0 | 23.405000686645508 | 36.32600021362305 | 2.9800000190734863 | 0.11999999731779099 | 15.399999618530273 | 0.7900000214576721 | 4.0 | -99.0 | 0.0 |
16.0 | 23.402999877929688 | 36.32600021362305 | 2.940000057220459 | 0.11999999731779099 | 20.399999618530273 | 1.090000033378601 | 6.400000095367432 | -99.0 | 0.0 |
18.0 | 23.402000427246094 | 36.32500076293945 | 2.7899999618530273 | 0.7200000286102295 | 24.600000381469727 | 1.440000057220459 | 13.5 | -99.0 | 0.0 |
20.0 | 23.402999877929688 | 36.32500076293945 | 2.609999895095825 | -99.98999786376953 | 27.200000762939453 | 1.590000033378601 | 12.5 | -99.0 | 0.0 |
22.0 | 23.402000427246094 | 36.327999114990234 | 2.7699999809265137 | 0.2199999988079071 | 25.899999618530273 | 1.5499999523162842 | 13.0 | -99.0 | 0.0 |
24.0 | 23.38800048828125 | 36.33000183105469 | 0.0 | ||||||
26.0 | 23.36400032043457 | 36.33599853515625 | 0.0 | ||||||
28.0 | 23.304000854492188 | 36.34600067138672 | 0.0 | ||||||
30.0 | 23.226999282836914 | 36.35599899291992 | 0.0 | ||||||
32.0 | 23.06800079345703 | 36.36600112915039 | 0.0 | ||||||
34.0 | 22.891000747680664 | 36.37799835205078 | 0.0 | ||||||
36.0 | 22.71299934387207 | 36.402000427246094 | 0.0 | ||||||
38.0 | 22.55699920654297 | 36.43600082397461 | 0.0 | ||||||
40.0 | 22.499000549316406 | 36.483001708984375 | 0.0 | ||||||
42.0 | 22.43000030517578 | 36.54800033569336 | 0.0 | ||||||
44.0 | 22.284000396728516 | 36.5890007019043 | 0.0 | ||||||
46.0 | 22.104000091552734 | 36.58100128173828 | 0.0 | ||||||
48.0 | 21.88800048828125 | 36.573001861572266 | 0.0 | ||||||
50.0 | 21.735000610351562 | 36.564998626708984 | 0.0 | ||||||
52.0 | 21.614999771118164 | 36.566001892089844 | 0.0 | ||||||
54.0 | 21.290000915527344 | 36.53799819946289 | 0.0 | ||||||
56.0 | 20.908000946044922 | 36.49700164794922 | 0.0 | ||||||
58.0 | 20.743999481201172 | 36.4739990234375 | 0.0 | ||||||
60.0 | 20.641000747680664 | 36.465999603271484 | 0.0 | ||||||
62.0 | 20.527000427246094 | 36.45600128173828 | 0.0 | ||||||
64.0 | 20.39699935913086 | 36.444000244140625 | 0.0 | ||||||
66.0 | 20.31999969482422 | 36.43899917602539 | 0.0 | ||||||
68.0 | 20.24799919128418 | 36.43899917602539 | 0.0 | ||||||
70.0 | 20.20400047302246 | 36.43899917602539 | 0.0 | ||||||
72.0 | 20.134000778198242 | 36.43299865722656 | 0.0 | ||||||
74.0 | 20.031999588012695 | 36.41600036621094 | 0.0 | ||||||
76.0 | 19.90399932861328 | 36.387001037597656 | 0.0 | ||||||
78.0 | 19.784000396728516 | 36.36600112915039 | 0.0 | ||||||
80.0 | 19.625 | 36.340999603271484 | 0.0 | ||||||
82.0 | 19.454999923706055 | 36.30699920654297 | 0.0 | ||||||
84.0 | 19.277999877929688 | 36.277000427246094 | 0.0 | ||||||
86.0 | 19.204999923706055 | 36.266998291015625 | 0.0 | ||||||
88.0 | 19.165000915527344 | 36.268001556396484 | 0.0 | ||||||
90.0 | 19.14900016784668 | 36.27000045776367 | 0.0 | ||||||
92.0 | 19.136999130249023 | 36.275001525878906 | 0.0 | ||||||
94.0 | 19.115999221801758 | 36.27799987792969 | 0.0 | ||||||
96.0 | 19.099000930786133 | 36.28200149536133 | 0.0 | ||||||
98.0 | 19.093000411987305 | 36.28799819946289 | 0.0 | ||||||
100.0 | 19.09000015258789 | 36.29399871826172 | 0.0 | ||||||
102.0 | 19.091999053955078 | 36.29899978637695 | 0.0 | ||||||
104.0 | 19.0939998626709 | 36.303001403808594 | 0.0 | ||||||
106.0 | 19.0939998626709 | 36.30799865722656 | 0.0 | ||||||
108.0 | 19.091999053955078 | 36.31100082397461 | 0.0 | ||||||
110.0 | 19.089000701904297 | 36.3129997253418 | 0.0 | ||||||
112.0 | 19.08300018310547 | 36.31700134277344 | 0.0 | ||||||
114.0 | 19.076000213623047 | 36.319000244140625 | 0.0 | ||||||
116.0 | 19.065000534057617 | 36.32400131225586 | 0.0 | ||||||
118.0 | 19.054000854492188 | 36.327999114990234 | 0.0 | ||||||
120.0 | 19.038000106811523 | 36.332000732421875 | 0.0 | ||||||
122.0 | 19.02400016784668 | 36.334999084472656 | 0.0 | ||||||
124.0 | 19.016000747680664 | 36.3390007019043 | 0.0 | ||||||
126.0 | 19.014999389648438 | 36.34600067138672 | 0.0 | ||||||
128.0 | 19.016000747680664 | 36.35300064086914 | 0.0 | ||||||
130.0 | 19.020000457763672 | 36.362998962402344 | 0.0 | ||||||
132.0 | 19.009000778198242 | 36.388999938964844 | 0.0 | ||||||
134.0 | 18.981000900268555 | 36.415000915527344 | 0.0 | ||||||
136.0 | 18.951000213623047 | 36.448001861572266 | 0.0 | ||||||
138.0 | 18.937999725341797 | 36.47700119018555 | 0.0 | ||||||
140.0 | 18.97800064086914 | 36.52000045776367 | 0.0 | ||||||
142.0 | 19.007999420166016 | 36.558998107910156 | 0.0 | ||||||
144.0 | 19.016000747680664 | 36.58399963378906 | 0.0 | ||||||
146.0 | 18.98900032043457 | 36.584999084472656 | 0.0 | ||||||
148.0 | 18.959999084472656 | 36.582000732421875 | 0.0 | ||||||
150.0 | 18.947999954223633 | 36.582000732421875 | 0.0 | ||||||
152.0 | 18.94300079345703 | 36.58100128173828 | 0.0 | ||||||
154.0 | 18.933000564575195 | 36.577999114990234 | 0.0 | ||||||
156.0 | 18.884000778198242 | 36.569000244140625 | 0.0 | ||||||
158.0 | 18.77199935913086 | 36.55699920654297 | 0.0 | ||||||
160.0 | 18.586999893188477 | 36.53099822998047 | 0.0 | ||||||
162.0 | 18.32699966430664 | 36.49300003051758 | 0.0 | ||||||
164.0 | 18.113000869750977 | 36.45600128173828 | 0.0 | ||||||
166.0 | 18.000999450683594 | 36.44900131225586 | 0.0 | ||||||
168.0 | 17.9060001373291 | 36.44200134277344 | 0.0 | ||||||
170.0 | 17.83300018310547 | 36.43299865722656 | 0.0 | ||||||
172.0 | 17.763999938964844 | 36.426998138427734 | 0.0 |
In total, there are 87 rows of distinct combinations of the variables listed above.
All of the rows are shown above.
To change the maximum number of rows displayed, change View : Distinct Data above.
To view the related data counts,
check View : Related Data Counts above and select a value for one of the variables above.
WARNING: This may involve lots of data.
For some datasets, this may be slow.
Consider using this only when you need it and
have selected a small subset of the data.
Related Data
(Metadata)
(Refine the data subset and/or download the data)
To view the related data, change View : Related Data above.
WARNING: This may involve lots of data. For some datasets, this may be slow. Consider using this only when you need it and have selected a small subset of the data.